(facul	(faculty stamp) COURSE DESCRIPTION		Z1-	-PU7	WYDANIE N1	Strona 1 z 2	
1. Co	Course title: ALGORITHMS AND PARADIGMS FOR PATTERN RECOGNITION 2. Course code: WM1						
3. Va	lidity of course description: 2019/2020						
4. Le	evel of studies: 1st cycle of higher education						
5. M	ode of studies: intramural studies						
6. Fi	eld of study: INFORMATICS		(FACULT	FACULTY SYMBOL) RMS			
7. Pr	ofile of studies: general						
8. Pr	ogramme: all						
9. Se	emester: V						
10. F	aculty teaching the course: Faculty of Applied Math	ematics					
11. (course instructor: professor Giacomo Capizzi						
12. (Course classification: approved programme elective	(monographic lecture)					
13. 0	Course status: elective						
14. L	anguage of instruction: English						
15. F	Pre-requisite qualifications: Numerical Methods, Stor	chastic models, English.					
16. 0	Course objectives: The aim of course is to familiarize	students with algorithms a	nd method	ls to re	cognize objects a	and programming of	on
supp	orted calculation platforms.						
17. [Description of learning outcomes:						
A stu	dent who completes the course successfully should						
Nr	Learning outcomes description	Method of assessment		Teach	ning methods	Learn	ning
						reference	e code
1.	can construct algorithms with good numerical precision	project	lecture, la	boratory	ý	K2A_\ K2A_\	N04
2.	can construct mathematical models used in specific	project	lecture, la	boratory	ý	K2A_V	N04
	applications of object recognition					K2A_V K2A_V	N06 U13
						K2A_I	U14
3.	algorithms and computational processes	project	lecture, la	boratory	ý	K2A_V K2A_V	//07 U13
4.	can make use of stochastic processes as a tool for	project	lecture, la	boratory	Ý	K2A_U	U13 W05
				-		K2A_V	N06
5.	know the numerical methods used for finding approximate solutions (for example, differential equations, etc.) used	project	lecture, la	boratory	ý	K2A_\ K2A_\	N07 U06
<u> </u>	for object recognition		la atuma dal	b a n a f a n		K2A_I	U13
0.	literature.	project	lecture, la	Doratory	y	KZA_V K2A_I	K01
18 7	eaching modes and hours					K2A_	K06
	To. Teaching modes and modes						
LCCU	are / DA /INA Schiniar / Slass / FTOjest / Laboratory						

Lecture 30h. Laboratory 30h.

19. Syllabus description:

Lecture: Image analysis and machine learning concepts, overview of supervised learning (classification and regression, Bayes decision theory, bias-variance trade-off curse of dimensionality), image features (detecting edges, lines and other features in images, hyperspectral features), unsupervised image classification (clustering and image segmentation of color images and hyperspectral data, agglomerative algorithms, graph-theory based algorithms), manifold learning (classical manifold learning techniquesapplied to natural and hyperspectral images), contextual and texture measures (texture statistics, texture recognition and synthesis, random fields), basics of neural network (why do we need machine learning? what are neural networks? some simple models of neurons, a simple example of learning, Perceptrons: simple and multilayer,

perceptrons as models of vision, types of neural network architectures, the back propagation algorithm, introduction to the full Bayesian approach, the idea of full Bayesian learing: Probabilistic Neural Network (PNN)).

Laboratories: Practical approach to theory and examples presented at lectures.

20. Examination: no

21. Primary sources:

- 1. Sergios Theodoridis and Konstantinos Koutroumbas, Pattern Recognition, Academic Press, 2008.
- 2. Richard O. Duda and Peter E. Hart and David G. Stork, Pattern Classification, Wiley, 2001.
- 3. David G. Stork and Elad Yom-Tov, Computer Manual in MATLAB to Accompany Pattern Classification, Wiley, 2004.
- 4. Christopher Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

22. Secondary sources:

- 1. Christopher Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 2005.
- 2. Sandhya Samarasinghe, Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern Recognition, Auerbach Publications, 2007.
- 3. Mohamad Hassoun, Fundamentals of Artificial Neural Networks, Massachusetts Institute of Technology, 1995.

23. Total workload required to achieve learning outcomes

Lp.	Teaching mode :	Contact hours / Student workload hours
1	Lecture	30/10
2	Classes	/
3	Laboratory	30/20
4	Project	/30
5	BA/ MA Seminar	1
6	Other: consultations, use of e-learning webpage	/30
	Total number of hours	60/60
24. Tota	al hours: 120	
25. Nun	nber of ECTS credits: 4	
26. Nun	nber of ECTS credits allocated for contact hours: 4	
27. Nun	nber of ECTS credits allocated for in-practice hours (lab	ooratory classes, projects): 1
26. Con	nments:	
To pass	, it is necessary to achieve all learning outcomes described	above.

Approved:

(date, Instructor's signature)

(date , the Director of the Faculty Unit signature)